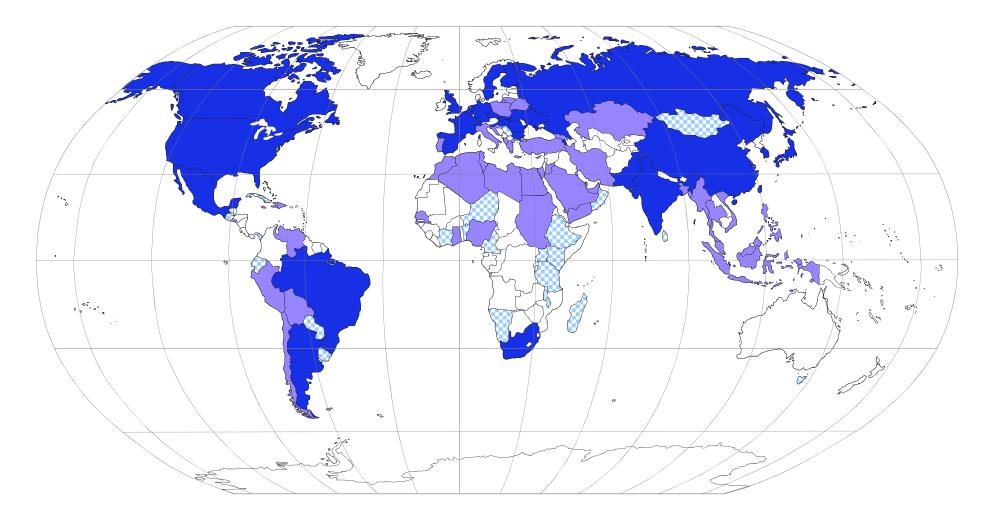
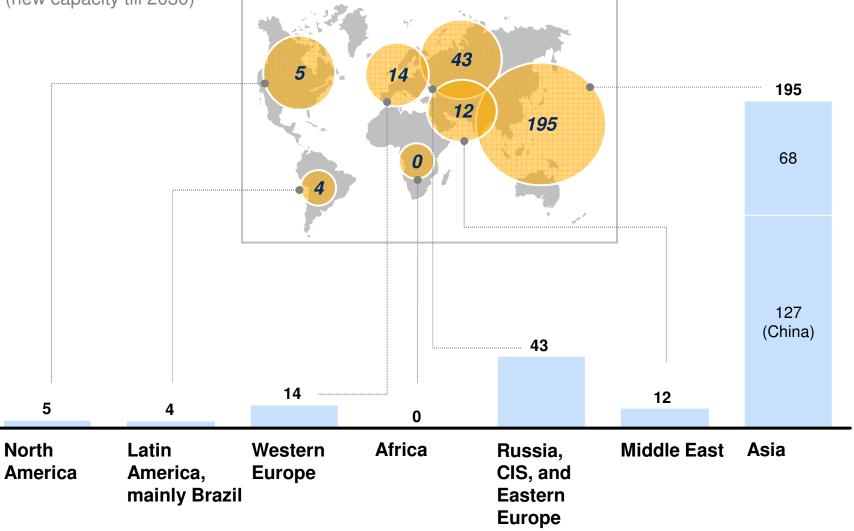

Perspective of Nuclear Power Industry on the Global Market


AtomExpo, Moscow, Russia June 10, 2014

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission of McKinsey & Company is strictly prohibited

McKinsey&Company

Many countries are showing interest in nuclear energy



SOURCE: McKinsey analysis

Future growth is uneven among geographies with Asia accounting for the majority stake

SOURCE: McKinsey analysis

different regions		Examples of geographies	Comments
	Decarbonization	 Western Europe Canada 	 emissions De It does not produce smoke particles to pollute the atmosphere
	Competing technologies	USABrazilDenmark	 Shale gas development in USA drives average gas prices down and reduces the economic incentive of building new NPP's
		Doninalit	 In some countries renewable energy sources are developing rapidly and begin to compete with all types of energy, including nuclear power
	Stable and reliable growth	IndiaTurkeyChina	 Production energy from NPP does not depend on the weather and is not subject to the price volatility associated with gas-fired plants It is relatively easy to forecast the output
	Energy diversification	ChinaUSA	 Countries which significantly dependent on prices for traditional energy sources are willing to diversify
			 Nuclear energy can be considered as a good substitute for traditional energy supply, but need to compete with other types of energy
	Nuclear suppliers	RussiaChinaS. KoreaFrance	 A number of countries are building NPPs at home to strengthen their position as world nuclear suppliers and to prove latest technology references to increase or protect their presence in the industry

There are key driving factors driving development of nuclear power in different regions

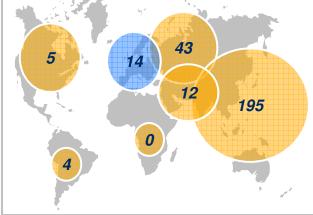
 Ultimately, economics should be right to compete in any region

SOURCE: McKinsey analysis

DECARBONIZATION

Despite the potential of adoption as a carbon free source of energy in Western countries nuclear faces strong challenges which limits growth

Current situation


- Nuclear has advantage due to trend for decarbonization
- At the same time strong challenges due to:
 - safety concerns (especially audible in Germany)
 - charge of back-end cost
 - high CAPEX, which might lead to comparatively high LCOE

Comments

- Merkel announced Germany will shut 17 NPP's by 2022, the decision made due to safety concerns after accident at Fukushima
- Charge of back-end cost is often underestimated in evaluation of total project LCOE
- NPP Hinkley Point C will be more expensive than offshore wind when commissioned (in 2023):
 - estimated LCOE for considered NPP will be ~10.7 EUR ct per KWh
 - LCOE for offshore wind will be
 <10.0 EUR ct per KWh in 2023 and will continue to fall

New capacity

- Opportunity to build new NPP's reduced to few southern markets, France and UK.
- Is this a European oddity or highlighting the challenges the nuclear industry will be facing going forward in other markets?

COMPETING TECHNOLOGIES US is dominated by shale agenda and nuclear energy has very limited potential

EXAMPLE 1

Current situation

- Very low gas prices
- Limited appetite to finance and guarantee large nuclear projects
- Modest increase in demand for energy

Comments

- Shale gas development in US drives average gas prices down and makes construction of new merchant nuclear power plants in competitive markets uneconomical now and in the nearest future
- LCOE of new power generation on natural gas is ~ 4 EUR ct per KWh, which is lower than for nuclear energy
- Recent world financial crisis and problems with debt make it more difficult to finance NPP projects, which requires big CAPEX
- Share of nuclear energy in overall power production in US is expected to decrease from 19% in 2010 to 13% in 2030
- Overall demand for energy in US is expected to rise significantly slower compared to rest of the world: by ~20% in 2030 compared to 2010, while average demand for energy in the world is expected to rise by almost 60% in the same period

Perspective for nuclear energy

- Opportunity to build new NPP's depends greatly on macroeconomic environment (ex. gas price), which now creates negative trends
- At the same time nuclear has to compete against energy efficiency and demand management programs, which also add tension to future nuclear growth in NA region

1 Carbon-Capture-and-Storage (CCS)

SOURCE: McKinsey Global Energy Perspective, McKinsey analysis

COMPETING TECHNOLOGIES

Brazil experienced significant increase in demand for energy, but nuclear has limited potential due to favorable conditions for renewables

EXAMPLE 2

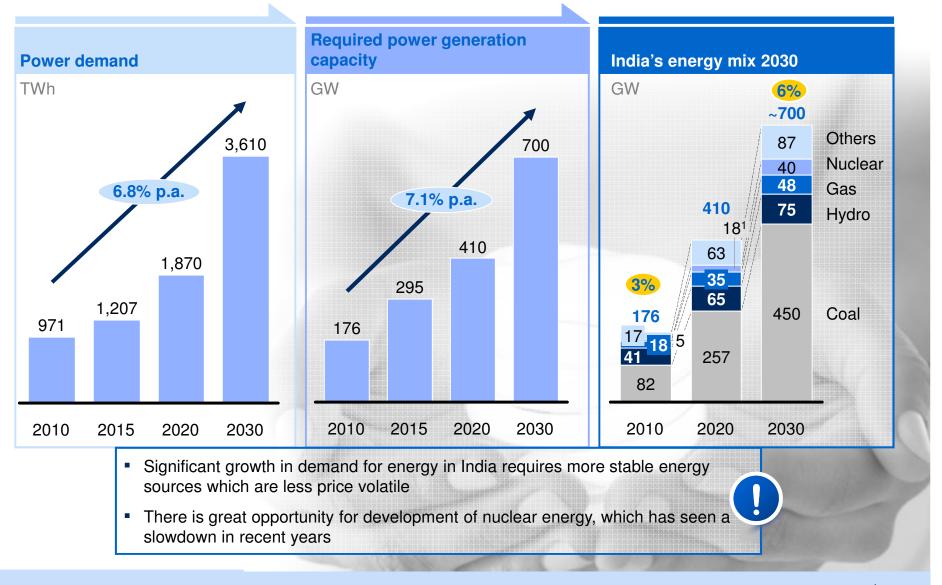
Current situation

- Significant increase in demand for energy
- Onshore wind has huge potential
- Huge existing hvdro facilities in Brazil and significant potential for small hydro plants

Comments

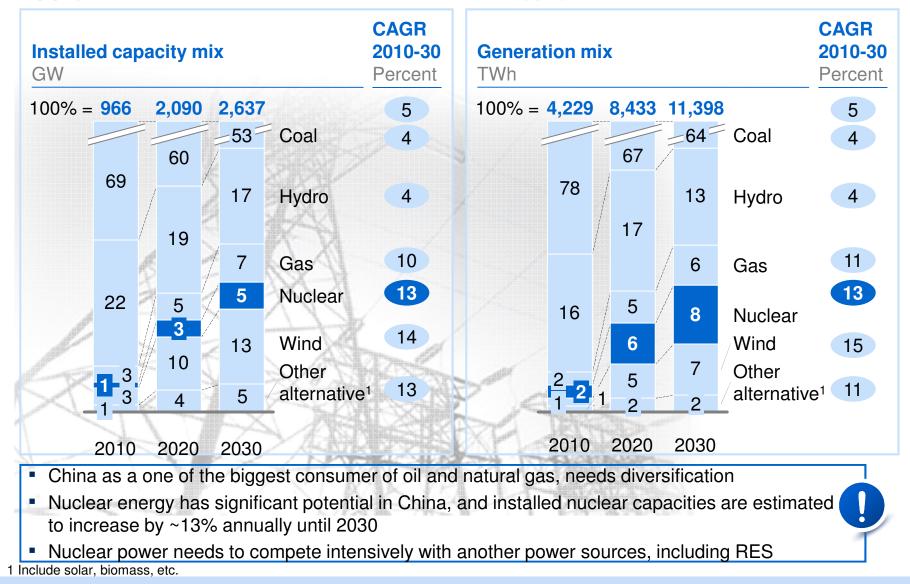
- Power demand in Brazil is estimated to increase by 2.4 times in 40 years: from 500 TWh in 2010 to 1200 TWh in 2050. which creates great opportunities for development of power production
- Brazil has a wind power generation potential of at least ~143 GW, most of them yet to be explored, and could aspire to reach higher than average (>30%) net capacity factor by selecting better locations at the beginning and setting up new turbines
- Almost 80% of the energy generated by Brazil and consumed domestically originates from big hydro plants. Unexplored potential of small hydro plants in the country is estimated in ~26 GW
- Economically, power from existing NPP's at ~\$75/MWh is ~1.5 times more expensive than that from established hydro, which makes nuclear energy less competitive

Perspective for nuclear energy

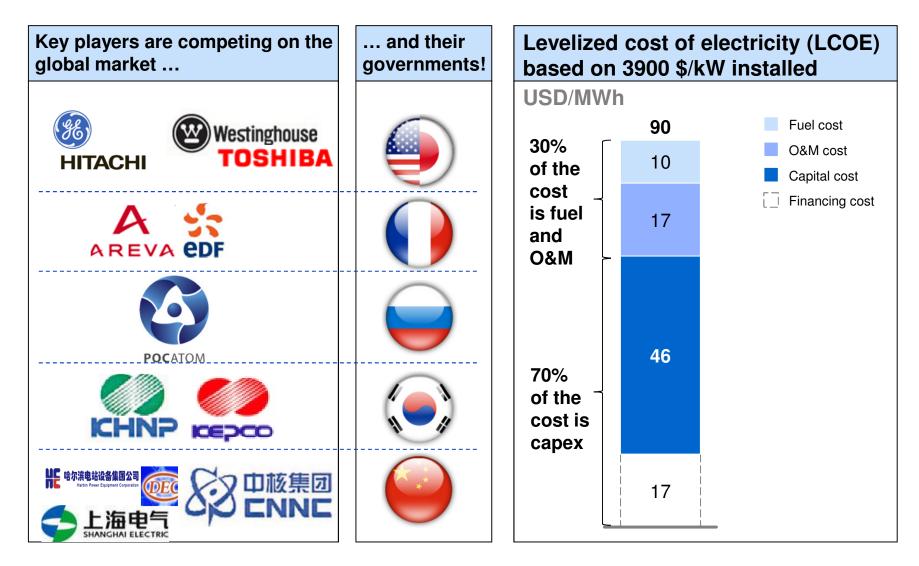

- Despite significant increase in demand for energy, opportunity to build new NPP's may be limited by other alternatives
- High dependency on hydro power may stimulate building new NPP's because of shortages in energy supply during draught periods

STABLE AND RELIABLE GROWTH India will require ~700 GW of power by 2030 and nuclear power share in India's total energy mix will double from 3% to 6%

PRELIMINARY


xx CAGR

SOURCE: Powering India: The Road to 2017, Global Data, EPS Estimates, McKinsey analysis

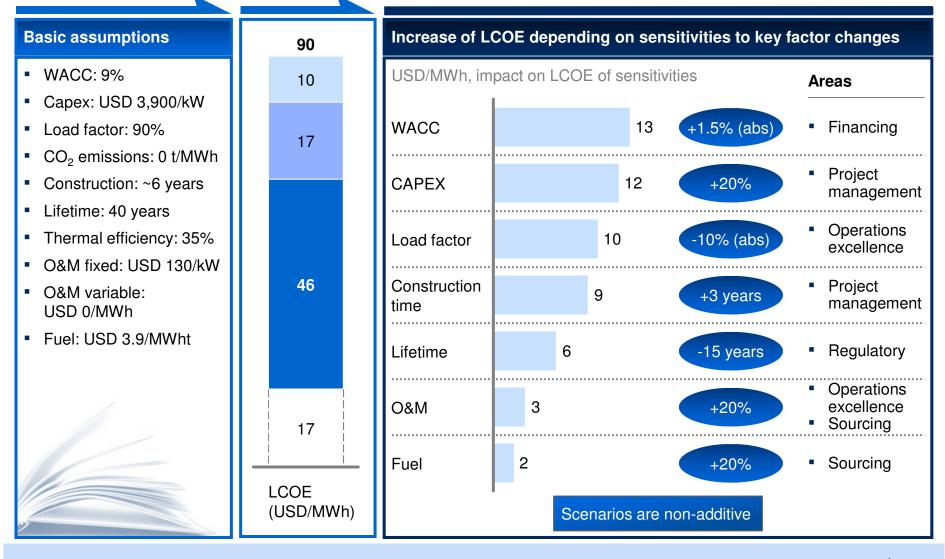

DIVERSIFICATION

Increased demand for energy in China stimulates increase in energy supply and need for diversification of energy generation

NUCLEAR SUPPLIERS

Competition, both geopolitical and economic, is really a test to see who can contain and reverse the overall cost of power...

NUCLEAR SUPPLIERS ... as well addressing economic, safety and other strategic criteria of competitiveness


		Description		
4 4 4 4 4 4 4 4 4 4 4 4 4 4	Project economics	 Overnight construction cost Utilization factor Construction period Plant service life 		
		 Operating and maintenance costs Fuel costs Decommissioning costs 		
	Safety level	 Conformity with generations III and III+ requirements Radioactive releases and emissions External impacts (storms, explosion wave, plane crash) Seismic stability Time during which the plant will remain safe in autonomous state in case of off-design accident Evacuation and long-term resettlement area in case of major accidents 		
-	Strategic aspects	 Political leverage, support Financing plan References Team experience Local content level New job creation Maneuverability Ability to use MOX fuel Independence from a single fuel manufacturer 		

To be competitive, today's nuclear projects will need to manage risks and find upside in a pre-defined set of areas

USD/MWh, Levelized cost of electricity (LCOE)

Fuel cost Capital cost

O&M cost Financing cost

SOURCE: McKinsey EPNG Practice (LCOE model)

McKinsey & Company | 11